Patterns for thesaurus conversion to RDF/OWL

Guus Schreiber Free University Amsterdam

Overview

- Thesauri and thesauri standards
- Conversion process
 - Example: Union List of Artist Names
 - Example: WordNet 2.0
- SKOS model for thesauri
- Issues with respect to (adding) semantics

Acknowledgements

- Conversion process: Mark van Assem, Jan Wielemaker, Bob Wielinga
- SKOS: Alistair Miles, Dan Brickley
- LSCOM examples: Cees Snoek, Laura Hollink
- W3C Semantic Web Best Practices & Deployment Working Group

3

Thesauri / vocabularies

- Large bodies of domain-specific knowledge that represent consensus in particular domains
- Typically weak semantic structure
- Often lots of implicit semantics available
- Representation is typically relational database and/or XML
- Semantic Web Challenge showed that thesauri are important resources for SW applications

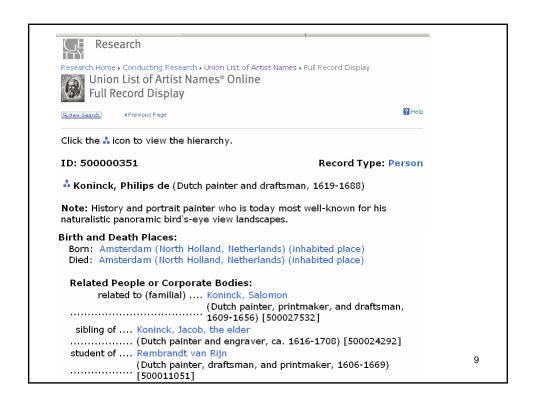
Example thesauri

- Domain-specific vocabularies
 - Medicine: UMLS, SNOMED, Galen
 - Art history: AAT, ULAN
 - Geography: TGN
 - Food: AgroVoc,
- Generic vocabularies
 - Lexical vocabularies: WordNet, FrameNet
 - Units and dimensions,
 - Currencies, country codes, ...

5

ISO standard for representing thesauri

- Term
 - Preferred term (USE)
 - Non-preferred term (USED FOR)
- Hierarchical relation between terms
 - Broader/narrower term (BT/NT)
 - Generic
 - Partitive
- Association between terms (RT)


Conversion process

- Two steps
- Step 1: "As is" conversion
 - Keep original names
 - Make implicit semantics explicit (but this can be hard to determine)
 - Decisions on whether to keep all information
- Step 2: adding semantics
 - Separate file(s)
 - Interpretation of thesauri elements, e.g. hyponym relation as rdfs:subClassOf
 - May require (lots of) additional research

7

Example thesaurus: ULAN

- 300,000 entries
- Consists of records of "Subjects" (artists and art institutions), with biographical information (place/time birth/death) and relations to other artists (student-of, ...)
- Large XML file with all data
- Basic representation:
 - association links between subjects
 - preferred/non-preferred terms relations between subjects and terms

XML fragment of ULAN

```
<Associative_Relationships>
  <Associative_Relationship>
  <Historic_Flag>NA</Historic_Flag>
  <Relationship_Type>
    1102/student of
  </Relationship_Type>
  <Related_Subject_ID>
    <VP_Subject_ID>500011051</VP_Subject_ID>
  </Related_Subject_ID>
  </Related_Subject_ID>
  </Associative_Relationship>
</Associative_Relationship>
```

Conversion issues

- XML and RDF/OWL are inherently different
 - XML = thesaurus document structure
 - RDF = thesaurus document content
- Redundant information in XML file

```
<Associative_Relationships>
<Historic_Flag>NA</Historic_Flag>
```

- How to represent "student of"?
 - Subproperty of Associative_Relationship is probably preferred
 - Needs to be derived from the data; not part of schema

11

XML fragment of ULAN (2)

```
<Non-Preferred_Term>
    <Term_Text>Koning, Philips Aertsz. de</Term_Text>
    <Term_ID>1500207734</Term_ID>
    <Display_Order>34</Display_Order>
    <Vernacular>Vernacular</Vernacular>
    </Non-Preferred_Term>
```

Conversion issues

- Do we include all information in the conversion?
 - Display-order example
 - Source and revisions information
- Should each term have a URI?
- Making language explicit
 - "vernacular" means the string is written in the original language
 - Multi-linguality is an important issue for thesauri

13

W3C°

RDF/OWL Representation of WordNet

W3C Working Draft 19 June 2006

This version:

http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/

Latest version:

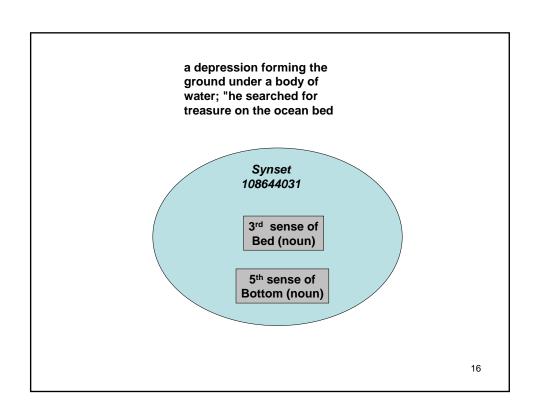
http://www.w3.org/TR/wordnet-rdf/

Previous version:

This is the first published version

Editors:

Mark van Assem, Vrije Universiteit Amsterdam Aldo Gangemi, ISTC-CNR, Rome


WordNet: internal representation

```
SynsetID Order LexForm Type SenseNum

s(108644031,1,'bed',n,3,2).
s(108644031,2,'bottom',n,5,1).

s(102719813,1,'bed',n,1,51).
s(102720436,1,'bed',n,2,3).

g(108644031,'(a depression forming the ground under a body of water; "he searched for treasure on the ocean bed")').
g(102719813,'(a piece of furniture that provides a place to sleep; "he sat on the edge of the bed"; "the room had only a bed and chair")').
g(102720436,'(a plot of ground in which plants are growing; "the gardener planted a bed of roses")').
```

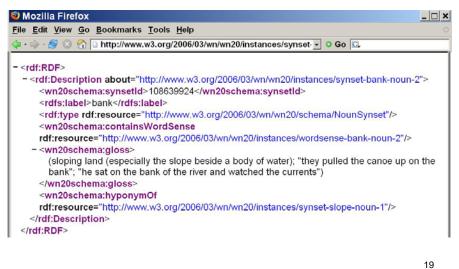

WordNet URI s

- What URIs should be chosen?
 - SynSet, WordSense, Word
- URI name:
 - ID? => difficult for human interpretation
 - Concatenated unique, human readable

wn:synset-bank-noun-2

First sense in synset denoted by second sense of "bank"

wn:wordsense-bank-noun-1 wn:word-bank

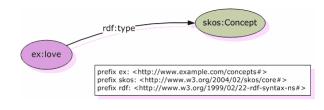

17

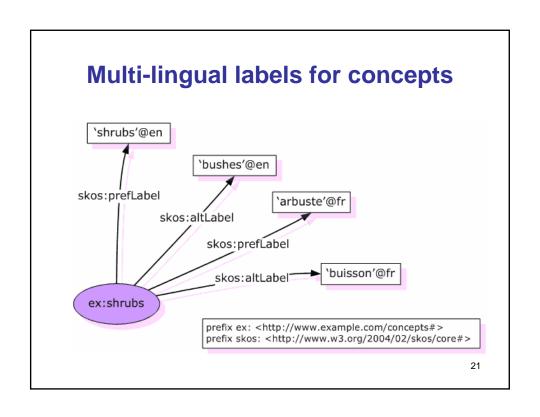
Implicit WordNet semantics

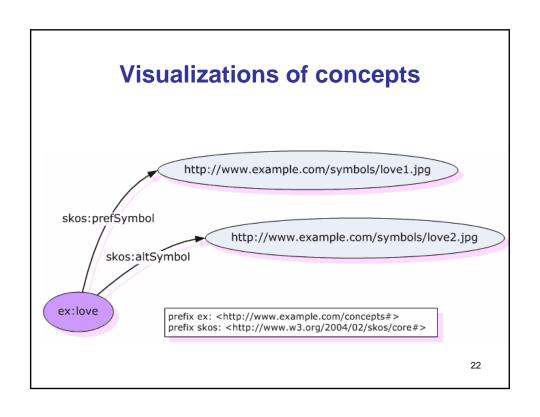
"The ent operator specifies that the second synset is an entailment of first synset. This relation only holds for verbs."

- Example: [breathe, inhale] entails [sneeze, exhale]
- Semantics (OWL statements):
 - Transitive property
 - Inverse property: entailedBy
 - Value restrictions for VerbSynSet (subclass of SynSet)

Query for WordNet URI returns "conceptbounded description"

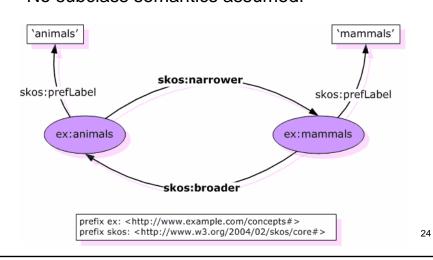


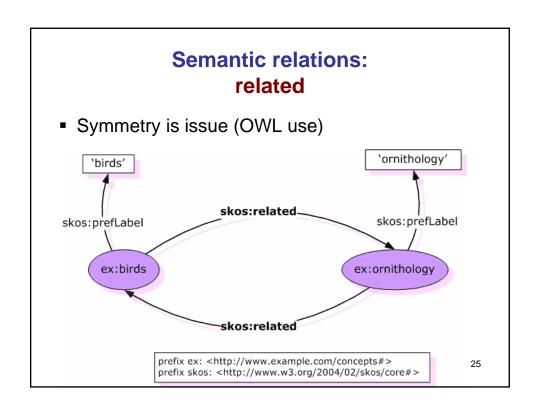

SKOS: pattern for thesaurus modeling

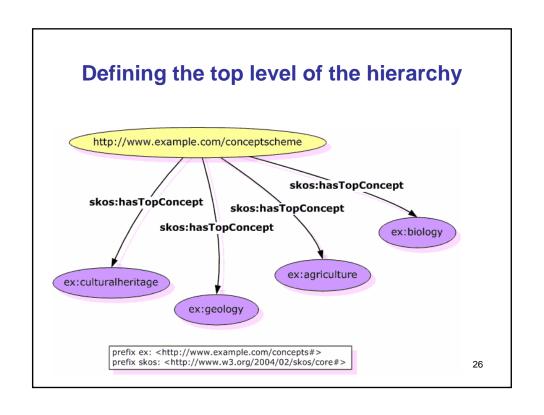

- Based on ISO standard
- RDF representation
- Documentation:

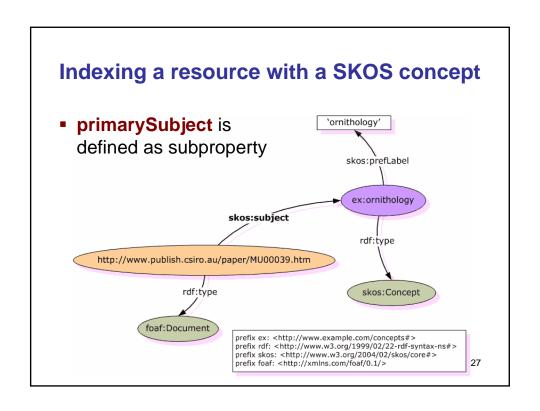
http://www.w3.org/TR/swbp-skos-core-guide/

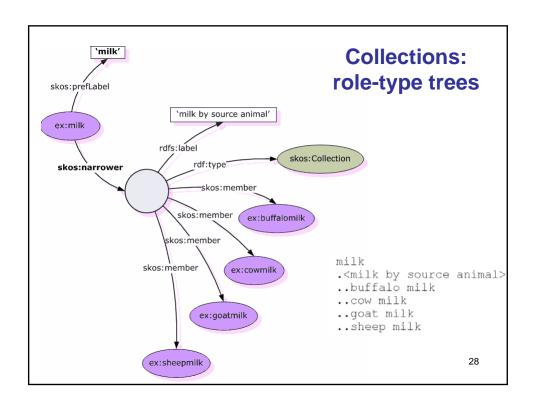
Base class: SKOS Concept

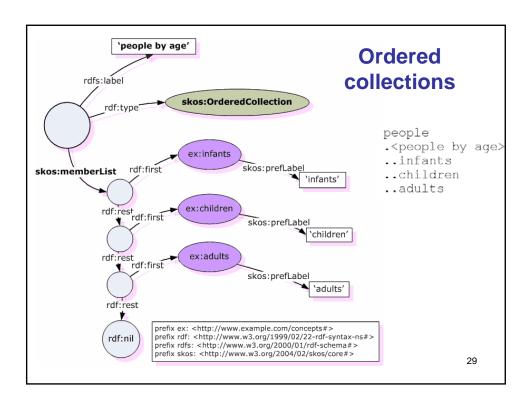

Documenting concepts


```
skos:note
|
+-- skos:definition
|
+-- skos:scopeNote
|
+-- skos:example
|
+-- skos:historyNote
|
+-- skos:editorialNote
|
+-- skos:changeNote
```


23


Semantic relation: broader and narrower


No subclass semantics assumed!

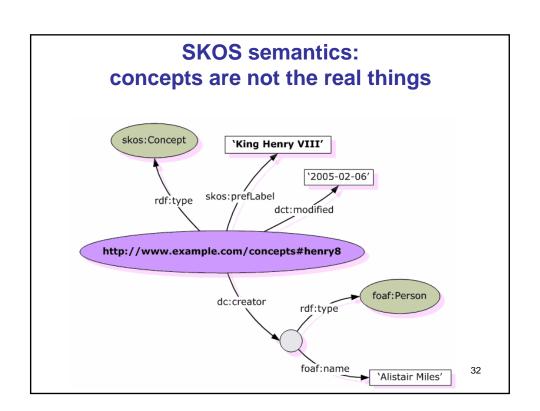


Recipes for vocabulary URIs

- Simplified rule:
 - Use "hash" variant" for vocabularies that are relatively small and require frequent access

http://www.w3.org/2004/02/skos/core#Concept

 Use "slash" variant for large vocabularies, where you do not want always the whole vocabulary to be retrieved


http://xmlns.com/foaf/0.1/Person

For more information and other recipes, see:

http://www.w3.org/TR/swbp-vocab-pub/

Adding semantics

- Adding OWL statements
- Interpretations of thesaurus relations such as narrower as subclass-of are often imprecise (but can still be useful)
- Learning relations between thesauri is important form of additional semantics
 - Example: AAT contains styles; ULAN contains artists, but there is no link
 - Availability of this kind of alignment knowledge is extremely useful

SKOS semantics inference rules (1)

Collection membership rule

(?i skos:subject ?x) (?x skos:broader ?y)
-> (?i skos:subject ?y)

If a painting of Van Gogh has as subject
 SunFlowers and if Flowers is a broader term of SunFlowers, then Flowers is also the subject of the painting.

33

SKOS semantics inference rules (2)

Collectable property rule

(?x ?p ?c) (?c skos:member ?m) (?p rdf:type skos:collectableProperty) -> (?x ?p ?m)

- If GoatMilk is a member of the collection <milk by source animal>, and the latter is a narrower concept for Milk, and narrower is a collectableProperty, then GoatMilk is also a narrower concept of Milk
- broader and related are also collectable

Metamodelling for thesauri: should terms be classes or instances?

- Many thesauri have a inherent metamodeling aspects:
 - The structure of the thesaurus: concepts, relations
 - The actual terms also have a class flavor
- Engineers feel compelled to choose which level to represent as classes
 - Treating terms as classes looses the semantics of the structure-level model

Sneeze is an instance of Verb

 Treating terms as instances loses the semantics of term relations

Bank is a subclass of FinancialInstitution

35

Metamodelling

- OWL DL requires strict separation of classes and instances
- But on the Semantic Web my instances may be your classes!
- Metamodelling features especially required in vocabulary/ontology mapping and/or interpretation
- Cf. Protégé metamodelling facilities
- OWL 1.1 (not standardized) allows limited metamodelling within OWL DL scope

Example: WordNet

Class(LexicalConcept)
Class(Noun subClassOf(LexicalConcept))
Property(hyponymOf
 domain(LexicalConcept)
 range(LexicalConcept))
Individual(1000768 type(LexicalConcept)
 wordForm(Human))

Problem: how to use the hyponym hierarchy as a subclass hierarchy?

37

RDF solution: use metamodelling

subClassOf(LexicalConcept Class) subPropertyOf(hyponymOf subClassOf) subPropertyOf(wordForm rdfs:label)

Corresponds to our intuition that WordNet model is a metamodel

Concepts for video detectors (Snoek et al)

LSCOM lexicon: 110 - Female Anchor

- Composite concept
- Alignment needed with general resource to understand semantics

- S: (n) anchor, anchorman, anchorperson (a television reporter who coordinates a broadcast to which several correspondents contribute)
 - $\circ \ \underline{\textit{direct hypernym}} \ / \ \underline{\textit{inherited hypernym}} \ / \ \underline{\textit{sister term}}$
 - S: (n) television reporter, television newscaster, <u>TV reporter</u>, <u>TV newsman</u> (someone who reports news stories via television)
 - S: (n) reporter, newsman, newsperson (a person who investigates and reports or edits news stories)
 - S: (n) communicator (a person who communicates with others)
 - \bullet S: (n) person, individual, someone, somebody, mortal, soul (a human

Issues

- Many thesauri do not have a rich semantic structure like WordNet
- Need for learning additional semantic relations between thesaurus concepts
- Result: "ontologizing thesauri"

41

New W3C work: Semantic Web Deployment Working Group

- Mission to help in vocabulary deployment
- Chartered to standardize SKOS
 Pattern for RDF/OWL representation of (ISO-compliant) thesauri
- Guidelines for adding semantics to existing vocabularies

http://www.w3.org/2006/07/SWD/